Numerical Solution of two-point boundary value problems using Sinc interpolation

نویسنده

  • Kenzu Abdella
چکیده

This paper presents the application of Sinc method to solve second order two-point boundary value problems based on derivative interpolation. Even in the presence of singularities, the Sinc numerical method is known to exhibit exponential convergence, resulting in highly accurate solutions. However, the customary approach of interpolating the solution variable with the Sinc bases requires first and higher order differentiations which induce high sensitivity to numerical errors. In contrast, in this paper, we use first derivative interpolation whose integration is much less sensitive to numerical errors. Moreover, derivative conditions at boundaries are treated with appropriate transformations in order to prevent numerical overflows near boundaries. Unlike previous approaches, the current approach preserves the exponential convergence associated with the Sinc numerical methods. Key–Words: Sinc numerical methods, Sinc-Collocation method, Derivative approximation, Boundary value problems, differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4

In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012